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Abstract. The problem Minimum Convex Cover of covering a given polygon with a minimum
number of (possibly overlapping) convex polygons is known to be NP-hard, even for polygons without
holes [J. C. Culberson and R. A. Reckhow, J. Algorithms, 17 (1994), pp. 2–44]. We propose a
polynomial-time approximation algorithm for this problem for polygons with or without holes that
achieves an approximation ratio of O(logn), where n is the number of vertices in the input polygon.
To obtain this result, we first show that an optimum solution of a restricted version of this problem,
where the vertices of the convex polygons may lie only on a certain grid, contains at most three
times as many convex polygons as the optimum solution of the unrestricted problem. As a second
step, we use dynamic programming to obtain a convex polygon which is maximum with respect to
the number of “basic triangles” that are not yet covered by another convex polygon. We obtain a
solution that is at most a logarithmic factor off the optimum by iteratively applying our dynamic
programming algorithm. Furthermore, we show that Minimum Convex Cover is APX-hard; i.e.,
there exists a constant δ > 0 such that no polynomial-time algorithm can achieve an approximation
ratio of 1+δ. We obtain this result by analyzing and slightly modifying an already existing reduction
[J. C. Culberson and R. A. Reckhow, J. Algorithms, 17 (1994), pp. 2–44].
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1. Introduction and problem definition. The problem Minimum Convex
Cover is the problem of covering a given polygon T with a minimum number of (pos-
sibly overlapping) convex polygons that lie in T . This problem belongs to the family
of classic art gallery problems; it is known to be NP-hard for input polygons with holes
[17] and without holes [4]. The study of approximations for hard art gallery problems
has rarely led to good algorithms or good lower bounds; we discuss a few exceptions
below. In this paper, we propose the first nontrivial approximation algorithm forMin-
imum Convex Cover. Our algorithm works for polygons with and without holes.
It relies on a strong relationship between the continuous original problem version and
a particular discrete version in which all relevant points are restricted to lie on a kind
of grid that we call a quasi grid. The quasi grid is the set of intersection points of
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all lines connecting two vertices of the input polygon. In the Restricted Minimum
Convex Cover problem, the vertices of the convex polygons that cover the input
polygon may lie only on this quasi grid. We prove that an optimum solution of the
Restricted Minimum Convex Cover problem needs at most three times the num-
ber of convex polygons that theMinimum Convex Cover solution needs. To find an
approximate solution for the Restricted Minimum Convex Cover problem, we
propose a greedy approach: we compute one convex polygon of the solution after the
other, and we pick as the next convex polygon one that covers a maximum number of
triangles defined on an even finer quasi grid, where these triangles are not yet covered
by previously chosen convex polygons. We propose an algorithm for finding such a
maximum convex polygon by means of dynamic programming. To obtain an upper
bound on the quality of the solution, we interpret our covering problem on triangles as
a special case of the generalMinimum Set Cover problem that gives as input a base
set of elements and a collection of subsets of the base set and that asks for a smallest
number of subsets in the collection whose union contains all elements of the base set.
In our special case, each triangle is an element, and each possible convex polygon is a
possible subset in the collection, but not all of these subsets are represented explicitly.
(There could be an exponential number of subsets.) This construction translates the
logarithmic quality of the approximation from Minimum Set Cover to Minimum
Convex Cover [13].

On the negative side, we show that Minimum Convex Cover is APX-hard; i.e.,
there exists a constant δ > 0 such that no polynomial-time algorithm can achieve
an approximation ratio of 1 + δ (see [3] for an introduction to the class APX). This
inapproximability result is based on a problem transformation shown by Culberson
and Reckhow [4]; we modify this transformation and show that it is gap-preserving
(as defined by Arora and Lund [1]).

The related problem of partitioning a given polygon into a minimum number of
nonoverlapping convex polygons is polynomially solvable for input polygons without
holes [2]. It is NP-hard for input polygons with holes [15] and can be approximated
with an approximation ratio of 4 [12]; it remains NP-hard even if the convex partition
must be created by cuts from a given family of (at least three) directions [16]. Other
related results for art gallery problems include approximation algorithms with log-
arithmic approximation ratios for Minimum Vertex Guard and Minimum Edge
Guard [10], as well as for the problem of covering a polygon with rectangles in
any orientation [11]. Furthermore, logarithmic inapproximability results are known
for Minimum Point/Vertex/Edge Guard for polygons with holes, and APX-
hardness results are known for the same problems for polygons without holes [6]. The
related problem Rectangle Cover of covering a given orthogonal polygon with a
minimum number of rectangles can be approximated with a constant ratio for poly-
gons without holes [9] and with an approximation ratio of O(

√
log n) for polygons

with holes [14]. For additional results, see the surveys on art galleries [18, 19]. The
general idea of using dynamic programming to find maximum convex structures has
been used before to solve the problem of finding a maximum (with respect to the
number of vertices) empty convex polygon, given a set of vertices in the plane [5]. An
O(log n) approximation algorithm for the problem of covering a polygon with rect-
angles in any orientation [11] relies on an approach similar to ours that consists of
making the problem discrete and then transforming it to a Minimum Set Cover
instance.

In section 2, we define the quasi grid and its refinement into triangles. Section 3
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Fig. 1. Construction of first-order basic triangles.

contains the proof of the linear relationship between the sizes of the optimum solutions
of the unrestricted and restricted convex cover problems. We propose a dynamic
programming algorithm to find a maximum convex polygon in section 4 before showing
how to iteratively apply this algorithm to find a convex cover in section 5. In section 6,
we present the proof of the APX-hardness ofMinimum Convex Cover. Concluding
thoughts are in section 7.

2. From the continuous to the discrete. We consider simple input polygons
with and without holes, where a polygon T is given as an ordered list of vertices in
the plane. If T contains holes, each hole is also given as an ordered list of vertices.
Let VT denote the set of vertices (including the vertices of holes, if any) of a given
polygon T . While in the general Minimum Convex Cover problem the vertices of
the convex polygons that cover the input polygon can be positioned anywhere in the
interior or on the boundary of the input polygon, we restrict their positions in an
intermediate step: they may be positioned only on a quasi grid in the Restricted
Minimum Convex Cover problem.

In order to define the Restricted Minimum Convex Cover problem more
precisely, we partition the interior of a polygon T into convex components (as proposed
in [10] for a different purpose) by drawing a line through each pair of vertices of T .
We then triangulate each convex component arbitrarily. We call the triangles thus
obtained first-order basic triangles. Figure 1 shows an example of the first-order basic
triangles of a polygon (thick solid lines) with an arbitrary triangulation (fine solid lines
and dashed lines). If a polygon T consists of n vertices, drawing a line through each
pair of vertices of T will yield less than

(
n
2

)·(n2) ∈ O(n4) intersection points. Let V 1
T be

the set of these intersection points that lie in T (in the interior or on the boundary).
Note that VT ⊆ V 1

T . The first-order basic triangles are a triangulation of V 1
T inside T ;

therefore, the number of first-order basic triangles is also O(n4). The Restricted
Minimum Convex Cover problem asks for a minimum number of convex polygons,
with vertices restricted to V 1

T , that together cover the input polygon T . We call V 1
T

a quasi grid that is imposed on T . For solving the Restricted Minimum Convex
Cover problem, we make use of a finer quasi grid: simply partition T by drawing
lines through each pair of points from V 1

T . This yields again convex components, and
we triangulate them again arbitrarily. This higher resolution partition yields O(n16)
intersection points, which define the set V 2

T . We call the resulting triangles second-
order basic triangles. Obviously, there are O(n16) second-order basic triangles. Note
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Fig. 2. Expansion of edge (b,c).

that VT ⊆ V 1
T ⊆ V 2

T .

3. The optimum solution of MINIMUM CONVEX COVER vs. the optimum
solution of RESTRICTED MINIMUM CONVEX COVER. The quasi grids V 1

T and V 2
T

serve the purpose of making a convex cover computationally efficient while at the
same time guaranteeing that the cover on the discrete quasi grid is not much worse
than the desired cover in continuous space. The following theorem proves the latter.

Theorem 1. Let T be an arbitrary simple input polygon with n vertices. Let
OPT denote the size of an optimum solution of Minimum Convex Cover with
input polygon T , and let OPT ′ denote the size of an optimum solution of Restricted
Minimum Convex Cover with input polygon T . Then

OPT ′ ≤ 3 ·OPT.

Proof. We proceed as follows: we show how to expand a given arbitrary convex
polygon C ⊆ T to another convex polygon C ′ ⊆ T with C ⊆ C ′ by iteratively
expanding edges. We then replace the vertices in C ′ by vertices from V 1

T , which
results in a (possibly) nonconvex polygon C ′′ ⊆ T with C ′ ⊆ C ′′. Finally, we describe
how to obtain three convex polygons C ′′

1 , C
′′
2 , C

′′
3 with C ′′ = C ′′

1 ∪C ′′
2 ∪C ′′

3 that contain
only vertices from V 1

T . This will complete the proof, since each convex polygon from
an optimum solution of Minimum Convex Cover can be replaced by at most three
convex polygons that are in a solution of Restricted Minimum Convex Cover.
Following this outline, let us present the proof details.

Expanding edges. Let C be an arbitrary convex polygon inside polygon T . Let
the vertices of C be given in clockwise order. We obtain a series of convex polygons
C1, C2, . . . , C ′ with C = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ C ′, where Ci+1 is obtained from Ci

as follows (see Figure 2).
Let a, b, c, d be consecutive vertices (in clockwise order) in the convex polygon

Ci that lies inside polygon T . For ease of description, we assume that Ci does not
contain vertices that are collinear with its two neighboring vertices, except when such
a vertex happens to be a vertex from VT ; moreover, any vertex from VT that lies on
the boundary of Ci is also a vertex of Ci, even if it has collinear neighbors in Ci.
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Let vertices b, c /∈ VT , with b and c not on the same edge of T . Then the edge (b, c)
is called expandable. If there exists no expandable edge in Ci, then C ′ = Ci, which
means that we have found the end of the series of convex polygons. If (b, c) is an
expandable edge, we expand the edge from vertex b to vertex c as follows:

• If b does not lie on the boundary of T , then we let a point p start at b and
move along the halfline through a and b away from a and b until either one of
the following two events happens: p lies on the line through c and d, or the
triangle p, c, b touches the boundary of T . Fix p as soon as the first of these
events happens. Figure 2 shows a list of all possible cases, where the edges
from polygon T are drawn as thick edges: point p lies on the intersection
point of the lines from a through b and from c through d as in case (i), or
there is a vertex vl on the line segment from p to c as in case (ii), or p lies on
an edge of T as in case (iii).

• If b lies on the boundary of T , i.e., on some edge of T , say, from vk to vk+1

(in clockwise order), then let p move from b as before, except that the move
is now along the halfline from vk through b away from vk and b up until at
most vk+1 (instead of the ray from a through b). Figure 2 shows a list of
all possible cases: point p lies either at vertex vk+1 as in case (iv) or on the
intersection point of the lines from b to vk+1 and from d through c as in case
(v), or there is a vertex vl on the line segment from p to c as in case (vi).

A new convex polygon Ci
p is obtained by simply adding point p as a vertex in

the ordered set of vertices of Ci between the two vertices b and c; if—as in cases (ii)
and (vi)—a vertex from VT lies on the boundary of Ci

p, it is also added as a vertex
(despite the fact that it may have two collinear neighbors). In contrast, all vertices
in Ci

p that have collinear neighbors and that are not vertices in VT are eliminated.

An edge from two consecutive vertices b and c with b, c /∈ VT can always be
expanded in such a way that the triangle b, p, c that is added to the convex polygon
is nondegenerate, i.e., has nonzero area, unless b and c both lie on the same edge of
polygon T . This follows from the cases (i)–(vi) of Figure 2.

Let Ci+1 = Ci
p if either a new vertex of VT has been added to Ci

p in the expansion

of the edge, which is true in cases (ii), (iv), and (vi), or the number of vertices of Ci
p

that are not vertices from VT has decreased, which is true in case (i). If p is as in
case (iii), we expand the edge (p, c), which will result in case (iv), (v), or (vi). Note
that in cases (iv) and (vi), we have found Ci+1. If p is as in case (v), we expand
the edge (p, d), which will result in case (iv), (v), or (vi). If it is case (v) again, we
repeat the procedure by expanding the edge from p and the successor (clockwise) of
d. This needs to be done at most as many times as there are vertices in Ci, since the
procedure eliminates a vertex from Ci in each iteration and will stop before it tries
to expand an edge ending at vertex a as the resulting polygon would not be convex.
Therefore, we obtain Ci+1 from Ci in a finite number of steps.

Let τi denote the number of vertices in Ci that are also vertices in T , and let τ̂i be
the number of vertices in Ci that are not vertices in T . Note that φ(i) = τ̂i−2τi+2n
is a function that bounds the number of remaining iteration steps that are needed to
reach C ′; it strictly decreases with every increase in i and cannot become negative
as τ̂i and τi are both nonnegative numbers by definition and n ≥ τi. The existence
of such a bounding function, which is often called a variant function, implies the
finiteness of the series C1, C2, . . . , C ′ of convex polygons.

By definition, there are no expandable edges left in C ′. Call a vertex of C ′ a
T -vertex if it is a vertex in T . From the definition of expandable edges, it is clear that
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there can be at most two non-T -vertices between any two consecutive T -vertices in
C ′, and if there are two non-T -vertices between two consecutive T -vertices, they must
both lie on the same edge in T . (Otherwise, the edge between two non-T -vertices
would be expandable, which contradicts the definition of C ′.)

Replacing vertices. Let the T -vertices in C ′ be t1, . . . , tl in clockwise order,
and let the non-T -vertices between ti and ti+1 be nti,1 and nti,2 if they exist. We will
replace each non-T -vertex nti,j in C ′ by one or two vertices nt1i,j and nt2i,j that are

both elements of the quasi grid V 1
T . This will transform the convex polygon C ′ into

a not necessarily convex polygon C ′′. (We will show later how C ′′ can be covered by
at most three convex polygons C ′′

1 , C
′′
2 , C

′′
3 .) The details are as follows: let a, b, c be

the first-order basic triangle in which non-T -vertex nti,j lies, as illustrated in Figure
3. Points a, b, c are all visible from both vertices ti and ti+1. To see this, assume by
contradiction that the view from, say, ti to a is blocked by an edge e of T . Since nti,j
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Fig. 4. Covering C′′ with three convex polygons.

must see ti, the edge e must contain a vertex e′ in the triangle ti, a, nti,j , but then a
cannot be a vertex of the first-order basic triangle in which nti,j lies, since the line
from vertex ti through vertex e′ would cut through the first-order basic triangle—an
impossibility.

Assume that only one non-T -vertex nti,1 exists between ti and ti+1. If the triangle
ti, ti+1, a completely contains the triangle ti, nti,1, ti+1, then we let nt1i,1 = a, and

likewise for b and c (see Figure 3 (ii)). Otherwise, we let (nt1i,1, nt
2
i,1) be (a, b), (a, c),

or (b, c), as in Figure 3 (i), such that the polygon ti, nt
1
i,1, nt

2
i,1, ti+1 is convex and

completely contains the triangle ti, nti,1, ti+1. This is always possible by the definition
of points a, b, c.

Assume that two non-T -vertices nti,1 and nti,2 exist between ti and ti+1. From
the definition of C ′, we know that nti,1 and nti,2 must lie on the same edge e of
T . Therefore, the basic triangle in which nti,1 lies must contain a vertex a either at
nti,1 or preceding nti,1 on edge e along T in clockwise order. Let nt1i,1 = a. The
basic triangle in which nti,2 lies must contain a vertex b either at nti,2 or succeeding
nti,2 on edge e. Let nt1i,2 = b. (See Figure 3 (iii).) Note that the convex polygon

ti, nt
1
i,1, nt

1
i,2, ti+1 completely contains the polygon ti, nti,1, nti,2, ti+1.

After applying this change to all non-T -vertices in C ′, we obtain a (possibly)
nonconvex polygon C ′′.

Covering with three convex polygons. We will now show how to cover C ′′

with at most three convex polygons. First, assume that C ′′ contains an odd number
f of T -vertices. We let C ′′

1 be the polygon defined by vertices ti, nt
k
i,j , and ti+1 for

all j, k and for all odd i, but i 
= f . By construction, C ′′
1 is convex. To see this,

assume C ′′
1 is not convex; it would then have to have at least one vertex whose inner

angle is larger than π, which cannot happen at non-T -vertices in C ′′
1 by construction.

The inner angles at a T -vertex ti−1 for i odd cannot be larger than π either, because
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polygon C ′′
1 lies entirely to the right of the line going from ti−1 through ti. Let C ′′

2

be the polygon defined by vertices ti, nt
k
i,j , and ti+1 for all j, k and for all even i.

Finally, let C ′′
3 be the polygon defined by vertices tf , nt

k
f,j , and t1 for all j, k. Using

similar arguments as for C ′′
1 , polygons C

′′
2 and C ′′

3 are convex as well. Figure 4 shows
an example. Obviously, C ′′

1 , C
′′
2 , and C

′′
3 together cover all of C ′′. Second, assume

that C ′′ contains an even number of T -vertices, and cover it with only two convex
polygons using the same concept. This completes the proof.

4. Finding maximum convex polygons. Assume that each second-order ba-
sic triangle from a polygon T is assigned a weight value of either 1 or 0. In this section,
we present an algorithm using dynamic programming that computes a convex polygon
M in a polygon T that contains a maximum number of second-order basic triangles
with weight 1 and that has vertices only from V 1

T . For simplicity, we call such a poly-
gon a maximum convex polygon. The weight of a polygon M is defined as the sum of
the weights of the second-order basic triangles in the polygon and is denoted by |M |.
We will later use the algorithm described below to iteratively compute a maximum
convex polygon with respect to the triangles that are not yet covered, to eventually
obtain a convex cover for T .

Let a, b, c ∈ V 1
T . Let Pa,b,c denote the maximum convex polygon that

• contains only vertices from V 1
T ,

• contains vertices a, b, c in counterclockwise order,
• has a as its left-most vertex,1

• contains additional vertices only between vertices a and b, and
• is completely contained in T .

Given three vertices a, b, c ∈ V 1
T , let A be the (possibly infinite) area of points

that are

• to the right of vertex a,
• to the left of the line oriented from b through a, and
• to the left of the line oriented from b through c.

1If polygon Pa,b,c has several left-most vertices, vertex a is one of them.
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1. Initialize table S(a, b, c) with zeros
2. FORALL a ∈ V 1

T DO O(n28)
3. Choose a helper point a′ with the same

x-coordinate and an arbitrary but smaller
y-coordinate than a

4. Order all vertices b ∈ V 1
T to the right of a

according to the angle formed by b, a, a′;
let the resulting ordered set be B O(n4 logn)

5. B′ := ∅
6. WHILE B �= ∅ DO O(n24)
7. Let b be the smallest element in B;

B := B − {b}; B′ := B′ ∪ {b}
8. FORALL c ∈ V 1

T \B′ to the right of a DO O(n20)

9. Compute |∆a, b, c| O(n16)
10. Define area A with respect

to vertices a, b, c according
to Lemma 2

11. FORALL d ∈ (V 1
T ∩A) DO O(n4)

12. Look up |Pa,d,b| and
store maximizing d in dmax

13. END
14. |Pa,b,c| := |∆a, b, c|+ |Pa,dmax,b|
15. Store |Pa,b,c| in table S
16. END
17. END
18. END
19. Find maximum entry in table S

Fig. 6. Algorithm for computing a maximum weight convex polygon.

For an illustration, see Figure 5. Let

P ′
a,b,c = max

d∈V 1
T
∩A
Pa,d,b ∪∆a, b, c,

where ∆a, b, c is the triangle a, b, c and max is defined as follows (to simplify notation):

max{P1, P2} =

{
P1 if |P1| ≥ |P2|,
P2 otherwise.

Lemma 2. Pa,b,c = P ′
a,b,c if the triangle a, b, c is completely contained in the

polygon T .
Proof. Consider Pa,b,c, which is maximum by definition. Pa,b,c must contain

additional vertices between a and b. (Otherwise, the lemma is trivially true.) Let d′

be the predecessor of b in the counterclockwise order of Pa,b,c. Vertex d′ must lie in
A as defined above. Now consider P ′′ = Pa,b,c −∆a, b, c. From the definition of A it
is clear that P ′′ can contain only vertices that lie in A. Now Pa,d′,b is maximum by
definition, and it is considered when computing P ′

a,b,c.
Let M be a maximum convex polygon for a polygon T with weights assigned to

the second-order basic triangles. Let a be the left-most vertex of M , let c be the
predecessor of a in M in counterclockwise order, and let b be the predecessor of c.
Then |Pa,b,c| = |M | by definition. We will use Lemma 2 to construct an algorithm,
which takes as input a polygon T and an assignment of weight 0 or 1 to each second-
order basic triangle of T and computes the maximum convex polygon. An overview
of the algorithm is given in Figure 6.
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In more detail, we start by initializing a table S(a, b, c), where the entry at position
a, b, c denotes the weight |Pa,b,c|, in line 1 of Figure 6. In a first loop, we fix vertex
a ∈ V 1

T in line 2, let a′ be a helper point with the same x-coordinate and an arbitrary
but smaller y-coordinate than a, and order all vertices b ∈ V 1

T to the right of a
according to the angle formed by b, a, a′. We call the resulting ordered set B and
let B′ be the empty set. In a second loop, starting at line 6, we iteratively take the
smallest element b from B, remove it from B, and add it to set B′; then for every
c ∈ V 1

T \B′ to the right of a (see line 8), we compute weight |∆a, b, c| of the triangle
a, b, c and compute Pa,b,c according to Lemma 2 in line 11 (i.e., look up the values
of Pa,d,b for all d ∈ V 1

T ∩ A and take the maximum; all these values were computed
in earlier iterations). We then compute weight |Pa,b,c| by adding |∆a, b, c| to |Pa,d,b|,
where d is the maximizing argument, and store the value in table S. Note that the
computation of Pa,b,c according to Lemma 2 is always possible, since all possible
vertices d in Pa,d,b lie to the left of the line from b to a (see also definition of area
A), have therefore smaller angles d, a, a′ than b, a, a′, and have therefore already been
computed. The algorithm is executed for every a ∈ V 1

T , and—by using standard
bookkeeping techniques (not explicitly given in the pseudocode of Figure 6)—the
maximum convex polygon found is returned.

The cumulative running times of the loops and the running times of some crucial
individual lines of the algorithm are given in Figure 6, resulting in an overall running
time of O(n28). To see this, we first look at the loop from line 8 to line 16: each
iteration of this loop takes time O(n16), which is the running time of computing the
weight of a triangle a, b, c (see line 9) as we have to add the weights of almost all
second-order basic triangles; the O(n4) running time of the inner loop (lines 11 to 13)
is dominated by the O(n16) running time of line 9. Since there are O(n4) iterations
of the loop from line 8 to line 16, we get a running time of O(n20) for this loop. The
loop from lines 6 to 17 consists of a total of O(n4) iterations of the O(n20) loop from
lines 8 to 16, thus resulting in a cumulative running time of O(n24). Finally, the loop
from lines 2 to 18 has O(n4) iterations of the O(n24) loop from lines 6 to 17; the
O(n4 log n) time required for sorting in line 4 is dominated by the O(n24) time for the
loop. Thus the overall running time is O(n28). Memory requirements are O(n12) as
we need to allocate table S.

5. An approximation algorithm for MINIMUM CONVEX COVER. Given a
polygon T , we obtain a convex cover by iteratively applying the algorithm for com-
puting a maximum convex polygon from section 4. It works as follows for an input
polygon T :

1. Let all second-order basic triangles have weight 1. Let S = ∅.
2. Find the maximum convex polygonM of polygon T using the algorithm from

section 4, and add M to the solution S. Decrease the weight of all second-
order basic triangles that are contained in M to 0.2

3. Repeat step 2 until there are no second-order basic triangles with weight 1
left. Return S.

To obtain a performance guarantee for this algorithm, consider theMinimum Set
Cover instance I, which has all second-order basic triangles as elements and where
the second-order basic triangles with weight 1 of each convex polygon in T , which
contains only vertices from V 1

T , form a set in I. The greedy heuristic for Minimum

2Note that by the definition of second-order basic triangles, a second-order basic triangle either
is completely contained in M or is completely outside M .
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Set Cover achieves an approximation ratio of 1 + lnn′, where n′ is the number of
elements in I [13], and it works in exactly the same way as our algorithm. However,
we do not have to (and could not afford to) compute all the sets of the Minimum Set
Cover instance I (which would be a number exponential in n′); it suffices to always
compute a set, which contains a maximum number of elements not yet covered by the
solution thus far. This is achieved by reducing the weights of the second-order basic
triangles already in the solution to 0; i.e., a convex polygon with maximum weight is
such a set.

Note that n′ = O(n16) since the number of triangles in a triangulation is pro-
portional to the number of points in V 2

T that induce the triangulation. Therefore,
our algorithm achieves an approximation ratio of O(log n) for Restricted Mini-
mum Convex Cover on input polygon T . Because of Theorem 1, we know that the
solution found for Restricted Minimum Convex Cover is also a solution for the
unrestricted Minimum Convex Cover that is at most a factor of O(log n) off the
optimum solution.

As for the running time of this algorithm, observe that the algorithm adds to the
solution in each round a convex polygon with nonzero weight. An optimum solution
would consist of at most O(n) convex polygons, since a triangulation of the vertices
of the input polygon yields a trivial solution with O(n) convex polygons that are
triangles in this case. Since our algorithm finds a solution that is at most a factor
O(log n) off the optimum solution and since it adds a convex polygon to the solution in
each round, there can be at most O(n log n) rounds before the algorithm finishes. As
each round takes time O(n28), the total running time is O(n29 log n). This completes
the proof of our first main theorem:

Theorem 3. Minimum Convex Cover for input polygons with or without holes
can be approximated by a polynomial-time algorithm with an approximation ratio of
O(log n), where n is the number of polygon vertices.

6. APX-hardness of MINIMUM CONVEX COVER. The upper bound ofO(log n)
on the approximation ratio for Minimum Convex Cover may not be tight: we will
now prove that there is a constant lower bound on the approximation ratio, and hence
a gap remains. More precisely, we prove Minimum Convex Cover to be APX-hard.
Our proof of the APX-hardness of Minimum Convex Cover for input polygons
with or without holes uses a construction similar to the one that is used to prove
the NP-hardness of this problem for input polygons without holes[4].3 However, we
reduce the problemMaximum 5-Occurrence-3-Sat rather than SATISFIABILITY
(SAT) (as done in the original reduction [4]) to Minimum Convex Cover, and we
design the reduction to be gap-preserving [1]. Maximum 5-Occurrence-3-Sat is
the variant of SAT in which each variable may appear at most five times in clauses
and each clause contains at most three literals. Maximum 5-Occurrence-3-Sat is
APX-complete [1].

The reduction is constructed as follows: for a given instance I of Maximum
5-Occurrence-3-Sat with n variables x1, . . . , xn and m clauses c1, . . . , cm, we con-
struct an instance I ′ ofMinimum Convex Cover. To stick to the notation of [4], let
li ≤ 5 denote the number of literals of variable xi in the clauses, and let l =

∑n
i=1 li

be the total number of literals.

For each literal in I, we construct a literal pattern, which we call a “beam ma-

3APX-hardness for Minimum Convex Cover for input polygons without holes implies APX-
hardness for the same problem for input polygons with holes.
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Fig. 7. The beam machine.

chine,” as illustrated in Figure 7. A beam machine allows us to send a beam, i.e., a
slim convex polygon in one of two possible directions out of the beam machine toward
a structure that represents a clause. The beam machines of all literals of a variable
are then combined into a variable structure, as illustrated in Figure 8. All these vari-
able structures are then arranged in a half-circle such that the beams emitted from
the beam machines reach the appropriate clause checkers, which are simple dents.
An overview of the whole structure is given in an example in Figure 9. After this
overview, let us give a more detailed description.

The beam machine that is constructed for each literal is shown in Figure 7. Since
no two of the four vertices a, a′, b, and b′ see each other, at least four convex polygons
are needed to cover the beam machine. Two of these are the maximal convex polygons
a, c, d and a′, c′, d. The remaining areas around the mouth and the ear (the triangle)
at b or b′ can be covered by a large convex polygon shown in light gray in Figure 7.
Finally, a fourth convex polygon is needed to cover the other ear (at b′ in Figure 7).
This polygon, which we call a beam, is very slim and can be extended indefinitely
beyond the mouth outside the beam machine. The large light gray convex polygon
thus acts as a switch: depending on whether we let it cover the ear at b or b′, we can
turn on the indefinite beam polygon at the other ear. However, we cannot turn on
both beams and still use only four polygons to cover the beam machine. Note that
we can “focus” and “aim” the beam by slightly bending the whole beam machine or
by making the ears smaller.

The variable structure is illustrated in Figure 8. Its basic shape is butterfly-like.
The beam machines for each occurrence of the variable in a literal in a clause are set
on top of the butterfly with the positive literals on the right wing and the negative
literals on the left wing of the butterfly. For each literal, we have a dent on the bottom
line of the wing. If we cover each dent of the left or right wing with a maximal convex
polygon, i.e., with a polygon that covers the whole dent and then extends canonically,
then we have covered almost all of the left or right wing except for the area around
the mouth of the variable structure and except for a small triangular region for each
literal that lies between two dents. These triangles are called beam locks. We can
cover the beam locks either by beams emanating from the beam machines or by a
single large convex polygon which also covers the region around the mouth of the
variable structure. Such a polygon is drawn in light gray in Figure 8. In a similar
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dent

mouth

beam lock

Fig. 8. The variable structure.

way as in the beam machine, this large convex polygon acts as a switch: in order to
cover the whole variable structure with a minimum number of convex polygons, we
can have the beam locks of only one wing covered with such a single polygon; the
beam locks of the other wing must be covered by the beams of the beam machines.
In Figure 8, beams that are turned on are drawn in dark gray, while beams that are
turned off are medium gray. Thus, in Figure 8, all beam machines of positive literals
are turned off, and all beam machines of negative literals are turned on and can shine
infinitely far beyond the mouth of the variable structure.4

We need four convex polygons to cover each beam machine; thus we need 4li
convex polygons to cover the beam machines in the variable structure for variable xi.
For each literal, we need an additional polygon to cover the dent, and we need one
additional large switcher polygon to cover the mouth and the beam locks of either
the positive or negative literals. Thus a minimum number of 5li + 1 convex polygons
are required to cover the variable structure of variable xi. Note that if the beams of
only one negative and one positive literal that are both aimed toward and beyond the
mouth of the variable structure are turned on, then 5li+2 convex polygons are needed
to cover the variable structure. On the other hand, if the beams of all (positive and
negative) literals that cover the beam locks are turned on, there are still 5li+1 convex
polygons needed to cover the variable structure, since we also need to cover the area
around the mouth.

We arrange all variable structures in a half-circle-like shape above a base line,
which contains triangular dents that represent the clauses, as illustrated in Figure
9. This is done in such a way that a beam emanating from a beam machine of a
literal that appears in a clause reaches the corresponding dent (the clause checker)
that represents that clause and thus covers it. Note that we can arrange the variable
structures in such a way that they cannot interfere with each other; i.e., no convex
polygon can cover any beam locks or areas around the mouth of two different variable
structures. We can achieve this by making the angles at the mouth of each variable

4The beam machines have not been drawn exactly to scale in Figure 8.
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Fig. 9. Overview of the construction.

structure very small.

Theorem 4. Let I be an instance of Maximum 5-Occurrence-3-Sat consist-
ing of n variables and m clauses with a total of l literals, and let I ′ be the corresponding
instance of Minimum Convex Cover. Let OPT be the maximum number of satisfied
clauses of I by any assignment of the variables. Let OPT ′ be the minimum number
of convex polygons needed to cover the polygon of I ′, and let ε > 0 be constant. Then

OPT = m =⇒ OPT ′ = 5l + n+ 1,

OPT < (1− 15ε)m =⇒ OPT ′ > 5l + n+ 1 + εn.

Proof. The first implication is trivial: if we have a variable assignment that
satisfies all variables, we turn on the beams that are aimed toward the clause checkers
of all beam machines that represent literals that are satisfied by the assignment. We
turn on the beams that are aimed toward the beam locks for all other beam machines.
Thus we need 5li + 1 convex polygons to cover the variable structure xi. If we sum
this up over all n variables, we obtain 5l+n convex polygons. We need one additional
polygon to cover the space between the base line and the variable structures.

Since each clause is satisfied, we must have for each clause checker at least one
beam turned on that covers it. Thus the convex polygons as just described cover all
of I ′.

We prove the second implication by proving its contraposition, i.e., OPT ′ ≤
5l + n+ 1 + εn =⇒ OPT ≥ (1− 15ε)m. To this end, we show how to transform the
convex polygons of any solution S′ of the Minimum Convex Cover instance I ′ in
such a way that their total number does not increase and in such a way that a truth
assignment of the variables satisfying the desired number of clauses can be “inferred”
from the convex polygons.

Suppose we are given a solution S′ of the Convex Cover instance with |S′| ≤
5l + n+ 1 + εn.



668 STEPHAN EIDENBENZ AND PETER WIDMAYER

By construction, the variable generator for variable xi must be covered by at least
5li+1 convex polygons. Moreover, by construction, there is no convex polygon, which
simultaneously covers a part of a beam lock in any variable generator and a part of a
clause checker. There is not even a convex polygon which covers a part of a beam lock
and touches the horizontal line, on which the clause checkers lie. Similarly, note that
there is no convex polygon which can simultaneously cover a part of an ear of a beam
machine and a part of any clause checker, except for the clause checker associated
with the beam machine.

Proceed in the following order:

1. Determine which convex polygon in S′ covers the midpoint on the line seg-
ment between the clause checkers of clause c1 and c2. Transform this polygon
in such a way that it covers all of the area between the clause checkers and
the variable generators. Note that no convex polygon that covers this mid-
point can also cover any beam lock, ear of a beam machine, or clause checker.
Therefore, we have a feasible solution after this step.

2. For each clause checker, proceed as follows: for each convex polygon in S′

that covers part of the clause checker and that is not a regular beam which
leads to a beam machine associated with the clause checker, turn the polygon
into a beam to any of the associated beam machines.

3. If there exists a convex polygon in S′ that covers parts of the interior of at
least two different variable structures, then choose any variable structure in
which it lies, and cut off all other parts. This operation results in a feasible
solution since, by construction, such a polygon cannot cover the beam locks
or the area around the mouths of two different variable structures.

4. For each variable structure, proceed as follows:
• If the variable structure for xi is covered by 5li+2 or more convex poly-
gons, then rearrange the convex polygons in such a way that all beams
that point to clause checkers are turned on for positive and negative
literals. By construction, this is always possible with 5li + 2 convex
polygons.

• If the variable structure for xi is covered by 5li + 1 convex polygons
and one beam from a beam machine for literal xi (¬xi) that is aimed
at its associated clause checker is turned on, then rearrange all convex
polygons in the variable generator in such a way that all beams from
beam machines for literal xi (¬xi) that are aimed at the associated clause
checkers are turned on.

The convex cover obtained this way is still a feasible solution. After this trans-
formation, we have for each variable structure xi one of the following cases:

• for all negative and positive literals, the beams that are aimed toward the
clause checkers are turned on;

• only for all positive or negative literals, the beams that are aimed toward the
clause checkers are turned on;

• for negative and positive literals, the beams that are aimed toward the beam
locks are turned on.

We set the truth values for the variables as follows: if all beams of literal xi (¬xi)
that are aimed at clause checkers and no beams of literal ¬xi (xi) that are aimed
at clause checkers are turned on, then let the variable xi have truth value TRUE
(FALSE). If either all or no beams (of both literals xi and ¬xi) that are aimed at
clause checkers are turned on, then let variable xi be TRUE.
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By construction, every solution of I ′ must consist of at least 5l + n + 1 convex
polygons. If we transform a solution of I ′ with 5l + n + 1 + εn convex polygons
as indicated above, we get at most εn variable structures in which the beams of all
literals (positive and negative) that are aimed at the clause checkers are turned on.
By assigning all these variables the value TRUE, we falsify at most five clauses for
each variable, since each variable appears at most five times as a literal.

Therefore, we get a solution of I with at least m − 5εn clauses satisfied. Since
3m ≥ n, the solution has at least m(1− 15ε) satisfied clauses.

In the so-called promise problem [1] of Maximum 5-Occurrence-3-Sat as de-
scribed above, we are promised that either all clauses are satisfiable or at most a
fraction of 1− 15ε of the clauses is satisfiable, and we are to find out which of the two
possibilities is true. This problem is NP-hard for sufficiently small values of ε > 0 (see
[1]). Therefore, Theorem 4 implies that the promise problem for Minimum Convex
Cover, where we are promised that the minimum solution contains either 5l+ n+1
convex polygons or at least 5l + n + 1 + εn convex polygons, is NP-hard as well for
sufficiently small values of ε > 0. Therefore, Minimum Convex Cover cannot be
approximated with a ratio of 5l+n+1+εn

5l+n+1 ≥ 1+ εn
25n+n+1 ≥ 1+ ε

27 , where we have used
that l ≤ 5n and n ≥ 1. This establishes the following theorem.

Theorem 5. Minimum Convex Cover on input polygons with or without holes
is APX-hard.

7. Conclusion. We have proposed a polynomial-time approximation algorithm
for Minimum Convex Cover that achieves an approximation ratio that is logarith-
mic in the number of vertices of the input polygon. This has been achieved by showing
that there is a discretized version of the problem using no more than three times the
number of cover polygons. The discretization may be a first step toward answer-
ing the long-standing open question of whether the decision version of the Minimum
Convex Cover problem is in NP [18]: we know now that there always exists an
optimum solution such that the convex polygons in such an optimum solution contain
only a polynomial number of vertices and that a considerable fraction of these vertices
are actually vertices from the input polygon; however, all other vertices of the convex
polygons could still need a superpolynomial number of bits for their coordinates to
be expressed. Apart from the discretization, our algorithm applies a Minimum Set
Cover approximation algorithm to a Minimum Set Cover instance with an ex-
ponential number of sets that are represented only implicitly, through the geometry.
We propose an algorithm that picks the best of the implicitly represented sets with
a dynamic programming approach and hence runs in polynomial time. This tech-
nique may prove to be of interest for other problems as well. Moreover, by showing
APX-hardness, we have eliminated the possibility of the existence of a polynomial-
time approximation scheme for this problem. However, polynomial-time algorithms
could still achieve constant approximation ratios. Whether our algorithm is the best
asymptotically possible is therefore an open problem. Furthermore, our algorithm has
a rather excessive running time of O(n29 log n), and it is by no means clear how this
can be improved substantially.
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